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Solving Sudoku

Sudoku puzzle: fill in the empty cells s.t.:
1. all rows contain all values from 1 to 9
2. all columns contain all values from 1 to 9
3. all sub-grids contain all values from 1 to 9

Approaches:
write a custom (heuristic-based) algorithm [imperative]

write a set of constraints and use a constraint solver [declarative]
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Sudoku with Squander

heap

SQUANDER Kodkod SAT Solver

serialize heap
spec

relational formula boolean formula

boolean modelrelational model
update heap

public class Sudoku {
private i n t [ ] [ ] g r i d = new i n t [ 9 ] [ 9 ] ;

@Ensures ( {
" a l l row in {0 . . . 8} | th is . g r i d [ row ] [ i n t ] = {1 . . . 9} " ,
" a l l co l in {0 . . . 8} | th is . g r i d [ i n t ] [ co l ] = {1 . . . 9} " ,
" a l l r , c in {0 , 1 , 2} | th is . g r i d [ { r ∗3 . . . r ∗3 + 2 } ] [ { c∗3 . . . c∗3+2} ] = {1 . . . 9} " } )

@Modifies ( " th is . g r i d [ i n t ] . elems | _<2> = 0 " )

public void solve ( ) { ??? }

public void solve ( ) { Squander . exe ( th is ) ; }

public s t a t i c void main ( S t r i n g [ ] args ) {
Sudoku s = new Sudoku ( ) ;
s . g r i d [ 0 ] [ 3 ] = 1 ; . . . ; s . g r i d [ 8 ] [ 5 ] = 1 ;
s . solve ( ) ;
System . out . p r i n t l n ( s ) ;

}
}

executable first-order relational specifications for Java

specify and solve constraint problems in place

no manual translation to/from an external solver
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1. all rows contain all values from 1 to 9

2. all columns contain all values from 1 to 9

3. all sub-grids contain all values from 1 to 9
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SQUANDER vs Manual Search

N-Queens
place N queens on an N×N chess board
such that no two queens attack each other

A solution with SQUANDER
@Ensures ( {

" a l l d is j q , r : r e s u l t . e l t s | " + / / for every two different queens q and r ensure that they are
" q . i != r . i && " + / / not in the same row
" q . j != r . j && " + / / not in the same column
" q . i − q . j != r . i − r . j && " + / / not in the same ↔ diagonal
" q . i + q . j != r . i + r . j " } ) / / not in the same ↔ diagonal

@Modifies ( {
" r e s u l t . e l t s . i from {0 . . . n−1} " , / / modify fields i and j of all elements of
" r e s u l t . e l t s . j from {0 . . . n−1} " } ) / / the result set, but only assign values from {0, . . . , n−1}

s t a t i c void solveNQueens ( i n t n , Set<Queen> r e s u l t ) {
Squander . exe ( null , n , r e s u l t ) ;

} says what, not how

What about performance?
It even outperforms the backtracking algorithm in this case!

4
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Outline
Framework Overview

specification language

SQUANDER architecture

Treatment of Data Abstractions
support for third party library classes
(e.g. Java collections)

Translation
from Java heap + specs to Kodkod

minimizing the universe size

BST1: {t1} N3: {n3} BST_this: {t1}
N1: {n1} N4: {n4} z: {n4}
N2: {n2} null: {null} ints: {0,1,5,6}
key_pre: {(n1→ 5),(n2→ 0),(n3→ 6),(n4→ 1)}
root_pre: {(t1→ n1)}
left_pre: {(n1→ n2),(n2→ null),(n3→ null),(n4→ null)}
right_pre: {(n1→ n3),(n2→ null),(n3→ null),(n4→ null)}
root: {}, {t1}×{n1,n2,n3,n4}
left: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}
right: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}

Evaluation/Case Study
performance advantages for some
puzzles and graph algorithms

case study: MIT course scheduler
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Specification Language
Example - Binary Search Tree

public class Tree {
private Node roo t ;

}

public class Node {
private Node l e f t , r i g h t ;
private i n t key ;

}

Annotations
class specification field @SpecField ( "<fld_decl> | <abs_func>")

@SpecField ( " th is . nodes : set Node | th is . nodes = th is . r oo t .∗ ( l e f t + r i g h t ) − n u l l " )
public class Tree {

class invariant @Invariant ( "<expr>")
@Invar iant ( {

/∗ l e f t sor ted ∗ / " a l l x : th is . l e f t .∗ ( l e f t + r i g h t ) − n u l l | x . key < th is . key " ,
/∗ r i g h t sor ted ∗ / " a l l x : th is . r i g h t .∗ ( l e f t + r i g h t ) − n u l l | x . key > th is . key " } )

public class Node {

method pre-condition @Requires ( "<expr>")

method post-condition @Ensures ( "<expr>")

method frame condition @Modifies ( "<fld> | < filter > from <domain>")

@Requires ( " z . key ! in th is . nodes . key " )
@Ensures ( " th is . nodes = @old ( th is . nodes ) + z " )
@Modifies ( " th is . root , th is . nodes . l e f t | _<1> = n u l l , th is . nodes . r i g h t | _<1> = n u l l " )
public void inser tNode (Node z ) { Squander . exe ( this , z ) ; }
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Framework Overview

heap

SQUANDER Kodkod SAT Solver

serialize heap
spec

relational formula boolean formula

boolean modelrelational model
update heap

Execution steps

traverse the heap and assemble the relevant constraints
translate to Kodkod

translate the heap to relations and bounds
collect all the specs and assemble a single relational formula

if a solution is found, update the heap to reflect the solution
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Translation
Framework Overview

specification language

SQUANDER architecture

Treatment of Data Abstractions
support for third party library classes
(e.g. Java collections)

Translation
from Java heap + specs to Kodkod

minimizing the universe size

BST1: {t1} N3: {n3} BST_this: {t1}
N1: {n1} N4: {n4} z: {n4}
N2: {n2} null: {null} ints: {0,1,5,6}
key_pre: {(n1→ 5),(n2→ 0),(n3→ 6),(n4→ 1)}
root_pre: {(t1→ n1)}
left_pre: {(n1→ n2),(n2→ null),(n3→ null),(n4→ null)}
right_pre: {(n1→ n3),(n2→ null),(n3→ null),(n4→ null)}
root: {}, {t1}×{n1,n2,n3,n4}
left: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}
right: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}

Evaluation/Case Study
performance advantages for some
puzzles and graph algorithms

case study: MIT course scheduler
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From Objects to Relations

The back-end solver — Kodkod
constraint solver for first-order logic with relations

SAT-based finite relational model finder
finite bounds must be provided for all relations

designed to be efficient for partial models
partial instances are encoded using bounds

10



From Objects to Relations

Translation of the BST.insert method
@Requires ( " z . key ! i n t h i s . nodes . key " )
@Ensures ( " t h i s . nodes = @old ( t h i s . nodes ) + z " )
@Modifies ( " t h i s . root , t h i s . nodes . l e f t | _<1> = n u l l , t h i s . nodes . r i g h t | _<1> = n u l l " )
public void inser tNode (Node z ) { Squander . exe ( this , z ) ; }

n1
key: 5 t1

n2
key: 0

n3
key: 6

n4
key: 1

root

left right

BST1: {t1} N3: {n3} BST_this: {t1}
N1: {n1} N4: {n4} z: {n4}
N2: {n2} null: {null} ints: {0,1,5,6}

reachable
objects

key_pre: {(n1 → 5),(n2 → 0),(n3 → 6),(n4 → 1)}
root_pre: {(t1 → n1)}
left_pre: {(n1 → n2),(n2 → null),(n3 → null),(n4 → null)}
right_pre: {(n1 → n3),(n2 → null),(n3 → null),(n4 → null)}

pre-state

root: {}, {t1}×{n1,n2,n3,n4 ,null}
left: {n1 → n2}, {n2,n3 ,n4}×{n1,n2 ,n3,n4 ,null}
right: {n1 → n3}, {n2 ,n3,n4}×{n1 ,n2,n3 ,n4,null}

post-state

lower bound upper bound

lower bound: tuples that must be included
upper bound: tuples that may be included
shrinking the bounds (instead of adding more constraints) leads to more efficient solving
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Performance of Tree.insertNode

What about performance now?

@Requires ( " z . key ! i n t h i s . nodes . key " )
@Ensures ( " t h i s . nodes = @old ( t h i s . nodes ) + z " )
@Modifies ( " t h i s . root , t h i s . nodes . l e f t | _<1> = n u l l , t h i s . nodes . r i g h t | _<1> = n u l l " )
public void inser tNode (Node z ) { Squander . exe ( this , z ) ; }

can only handle trees up to about 100 nodes
reason: tree insertion is algorithmically simple
→ imperative algorithm scales better than NP-complete SAT solving

“Squander”: wasting CPU cycles for programmer’s cycles

Saving programmer’s cycles
fast prototyping: get a correct working solution early on
differential testing: compare the results of imperative and declarative
implementations
test input generation: use SQUANDER to generate some binary trees
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Generating Binary Search Trees with SQUANDER

@Ensures ( " # t h i s . nodes = s ize " )
@Modifies ( " t h i s . root , Node . l e f t , Node . r i g h t , Node . key " )
@FreshObjects ( c l s =Node . class , num = s ize ) ,
@Options ( s o l v e A l l = true )
public void gen ( i n t s ize ) { Squander . exe ( th is ) ; }

to generate many different trees
the caller can use the SQUANDER API to request a different
solution for the same specification

13



Treatment of Data Abstractions
Framework Overview

specification language

SQUANDER architecture

Treatment of Data Abstractions
support for third party library classes
(e.g. Java collections)

Translation
from Java heap + specs to Kodkod

minimizing the universe size

BST1: {t1} N3: {n3} BST_this: {t1}
N1: {n1} N4: {n4} z: {n4}
N2: {n2} null: {null} ints: {0,1,5,6}
key_pre: {(n1→ 5),(n2→ 0),(n3→ 6),(n4→ 1)}
root_pre: {(t1→ n1)}
left_pre: {(n1→ n2),(n2→ null),(n3→ null),(n4→ null)}
right_pre: {(n1→ n3),(n2→ null),(n3→ null),(n4→ null)}
root: {}, {t1}×{n1,n2,n3,n4}
left: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}
right: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}

Evaluation/Case Study
performance advantages for some
puzzles and graph algorithms

case study: MIT course scheduler

14



User-Defined Abstractions for Library Types

Why is it important to be able to specify library types?

library classes are ubiquitous
specs need to be able to talk about them
class Graph {

class Node { public i n t key ; }
class Edge { public Node src , dest ; }

private Set<Node> nodes = new LinkedHashSet <Node > ( ) ;
private Set<Edge> edges = new LinkedHashSet <Edge > ( ) ;

/ / how to w r i t e a spec f o r the k−Color ing
/ / problem f o r a graph l i k e t h i s ?
public Map<Node , In teger > co lo r ( i n t k ) {

return Squander . exe ( this , k ) ;
}

}

solution:
use @SpecField to specify abstract data types
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User-Defined Abstractions for Library Types

How to support a third party class?
write a spec file
in ter face Map<K,V> {

@SpecField ( " e l t s : K −> V" )

@SpecField ( " s i ze : one i n t | th is . s i ze = # th is . e l t s " )
@SpecField ( " keys : set K | th is . keys = th is . e l t s . ( V) " )
@SpecField ( " va ls : set V | th is . va ls = th is . e l t s [K ] " )

@Invariant ( { " a l l k : K | k in th is . e l t s .V => one th is . e l t s [ k ] " } ) }

write an abstraction and a concretization function
public class MapSer implements IObjSer {

public L i s t <Fie ldValue > absFunc ( JavaScene javaScene , Object ob j ) {
/ / r e t u r n values f o r the f i e l d " e l t s " : Map −> K −> V

}

public Object concrFunc ( Object obj , F ie ldValue f i e l d V a l u e ) {
/ / update and r e t u r n the given ob jec t " ob j " from
/ / the given values o f the given abs t rac t f i e l d

} }
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Using Collections: Example

Now we can specify the k-Coloring problem
class Graph {

class Node { public i n t key ; }
class Edge { public Node src , dest ; }

private Set<Node> nodes = new LinkedHashSet <Node > ( ) ;
private Set<Edge> edges = new LinkedHashSet <Edge > ( ) ;

@Ensures ( {
" return . keys = th is . nodes . e l t s " ,
" return . va ls in {1 . . . k } " ,
" a l l e : th is . edges . e l t s | return . e l t s [ e . s rc ] != return . e l t s [ e . ds t ] " } )

@Modifies ( " return . e l t s " )
@FreshObjects ( c l s = Map. class , num = 1)
public Map<Node , In teger > co lo r ( i n t k ) { return Squander . exe ( this , k ) ; }

}

in ter face Set<K> {
@SpecField ( " e l t s : set K" )

@SpecField ( " s i ze : one i n t |
th is . s i ze =# th is . e l t s " )

}

in ter face Map<K, V> {
@SpecField ( " e l t s : K −> V" )

@SpecField ( " s i ze : one i n t | th is . s i ze = # th is . e l t s " )
@SpecField ( " keys : set K | th is . keys = th is . e l t s . ( V) " )
@SpecField ( " va ls : set V | th is . va ls = th is . e l t s [K ] " )

@Invariant ( { " a l l k : K | k in th is . e l t s .V => one th is . e l t s [ k ] " } ) }
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Evaluation/Case Study
Framework Overview

specification language

SQUANDER architecture

Treatment of Data Abstractions
support for third party library classes
(e.g. Java collections)

Translation
from Java heap + specs to Kodkod

minimizing the universe size

BST1: {t1} N3: {n3} BST_this: {t1}
N1: {n1} N4: {n4} z: {n4}
N2: {n2} null: {null} ints: {0,1,5,6}
key_pre: {(n1→ 5),(n2→ 0),(n3→ 6),(n4→ 1)}
root_pre: {(t1→ n1)}
left_pre: {(n1→ n2),(n2→ null),(n3→ null),(n4→ null)}
right_pre: {(n1→ n3),(n2→ null),(n3→ null),(n4→ null)}
root: {}, {t1}×{n1,n2,n3,n4}
left: {}, {n1,n2,n3,n4}×{n1,n2,n3,n4}
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SQUANDER vs Manual Search

N-Queens

place N queens on an N×N chess board
such that no two queens attack each other
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SQUANDER vs Manual Search

Hamiltonian Path

find a path in a graph that visits all nodes exactly once

Graphs with Hamiltonian path Graphs with no Hamiltonian path
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SQUANDER vs Manual Search

So, is SQUANDER always better than backtracking?
of course not!

Rather, the takeaway point is
if the problem is easy to specify, it makes sense to do that first

1. you’ll get a correct solution faster

2. if the problem is algorithmically complex, the scalability
might be satisfying as well

21



Other Evaluation Questions

usability on a real-world constraint problem

an existing implementation retrofitted with SQUANDER
didn’t have to change the local structure, just annotate classes
... thanks to the treatment of data abstractions

annotation overhead

only about 30 lines of specs to replace 1500 lines of code
... thanks to the unified execution environment

ability to handle large program heaps

the heap counted almost 2000 objects
... thanks to the clustering algorithm

efficiency

about 5s as opposed to 1s of the original implementation

22



Case Study – Course Scheduler
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Limitations

boundedness – SQUANDER can’t generate an arbitrary number
of new objects; instead the maximum number of new objects
must be explicitly specified by the user

integers – integers must also be bounded to a small bitwidth

equality – only referential equality can be used (except for
strings)

no higher-order expressions – e.g. can’t specify find the
longest path in the graph; instead must specify the minimum
length k , i.e. find a path in the graph of length at least k nodes

debugging – if a solution cannot be found, the user is not given
any additional information as to why the specification wasn’t
satisfiable

25



Future Work

optimize translation to Kodkod
use fewer relations to represent the heap
(short-circuit some unmodifiable ones)

support debugging better
when no solution can be found, explain why
(with the help of unsat core)

synthesize code from specifications
especially for methods that only traverse the heap

combine different solvers in the back end
SMT solvers would be better at handling large integers
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Summary

SQUANDER lets you
execute first-order, relational specifications in Java

Why would you want to do that?
conveniently express and solve algorithmically complicated
problems using declarative constraints
gain performance in certain cases (e.g. for NP-hard problems)
during development:

fast prototyping (get a correct working solution fast)
generate test inputs
runtime assertion checking

Thank You!
http://people.csail.mit.edu/aleks/squander
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Solving Sudoku with Alloy Analyzer

abstract sig Number { }
one sig N1, N2, N3, N4, N5, N6, N7, N8,N9 extends Number { }

one sig Global {
data : Number −> Number −> one Number

}

pred complete [ rows : set Number , co ls : set Number ] {
Number = Global . data [ rows ] [ co ls ]

}

pred r u l es {
a l l row : Number { complete [ row , Number ] }
a l l co l : Number { complete [ Number , co l ] }
l e t r1=N1+N2+N3, r2=N4+N5+N6, r3=N7+N8+N9 |

complete [ r1 , r1 ] and complete [ r1 , r2 ] and complete [ r1 , r3 ] and
complete [ r2 , r1 ] and complete [ r2 , r2 ] and complete [ r2 , r3 ] and
complete [ r3 , r1 ] and complete [ r3 , r2 ] and complete [ r3 , r3 ]

}

pred puzzle {
N1−>N4−>N1 + N1−>N8−>N9 +
. . .
N9−>N2−>N2 + N9−>N6−>N1 in Global . data

}

run { r u l es and puzzle }

28



Solving Sudoku with Kodkod
public class Sudoku {

private Rela t ion Number = Re la t ion . unary ( "Number " ) ;
private Rela t ion data = Re la t ion . t e rna ry ( " data " ) ;
private Rela t ion [ ] reg ions = new Rela t ion [ ] {

Re la t ion . unary ( " Region1 " ) ,
Re la t ion . unary ( " Region2 " ) ,
Re la t ion . unary ( " Region3 " ) } ;

public Formula complete ( Expression rows , Expression co ls ) {
/ / Number = data [ rows ] [ co ls ]
return Number . eq ( co ls . j o i n ( rows . j o i n ( data ) ) ) ; }

public Formula ru l es ( ) {
/ / a l l x , y : Number | lone data [ x ] [ y ]
Var iab le x = Var iab le . unary ( " x " ) ;
Var iab le y = Var iab le . unary ( " y " ) ;
Formula f1 = y . j o i n ( x . j o i n ( data ) ) . lone ( ) .

f o r A l l ( x . oneOf ( Number ) . and ( y . oneOf ( Number ) ) ) ;
/ / a l l row : Number | complete [ row , Number ]
Var iab le row = Var iab le . unary ( " row " ) ;
Formula f2 = complete ( row , Number ) .

f o r A l l ( row . oneOf ( Number ) ) ;
/ / a l l co l : Number | complete [ Number , co l ]
Var iab le co l = Var iab le . unary ( " co l " ) ;
Formula f3 = complete ( Number , co l ) .

f o r A l l ( co l . oneOf ( Number ) ) ;
/ / complete [ r1 , r1 ] and complete [ r1 , r2 ] and complete [ r1 , r3 ] and
/ / complete [ r2 , r1 ] and complete [ r2 , r2 ] and complete [ r2 , r3 ] and
/ / complete [ r3 , r1 ] and complete [ r3 , r2 ] and complete [ r3 , r3 ]
Formula ru l es = f1 . and ( f2 ) . and ( f3 ) ;
for ( Re la t ion rx : reg ions )

for ( Re la t ion ry : reg ions )
ru l es = ru l es . and ( complete ( rx , ry ) ) ;

return r u l es ;
}

public Bounds puzzle ( ) {
Set< In teger > atoms = new LinkedHashSet < In teger > ( 9 ) ;
for ( i n t i = 1 ; i <= 9 ; i ++) { atoms . add ( i ) ; }
Universe u = new Universe ( atoms ) ;
Bounds b = new Bounds ( u ) ;

TupleFactory f = u . f a c t o r y ( ) ;
b . boundExactly (Number , f . a l l O f ( 1 ) ) ;
b . boundExactly ( reg ions [ 0 ] , f . setOf (1 , 2 , 3 ) ) ;
b . boundExactly ( reg ions [ 1 ] , f . setOf (4 , 5 , 6 ) ) ;
b . boundExactly ( reg ions [ 2 ] , f . setOf (7 , 8 , 9 ) ) ;

TupleSet givens = f . noneOf ( 3 ) ;
g ivens . add ( f . t up l e (1 , 4 , 1 ) ) ;
g ivens . add ( f . t up l e (1 , 8 , 9 ) ) ;
. . .
g ivens . add ( f . t up l e (9 , 6 , 1 ) ) ;
b . bound ( data , givens , f . a l l O f ( 3 ) ) ;
return b ;

}

public s t a t i c void main ( S t r i n g [ ] args ) {
Solver so l ve r = new Solver ( ) ;
so l ve r . op t ions ( ) . se tSo lver ( SATFactory . Min iSat ) ;
Sudoku sudoku = new Sudoku ( ) ;
So lu t i on so l = so l ve r . so lve ( sudoku . ru l es ( ) , sudoku . puzzle ( ) ) ;
System . out . p r i n t l n ( so l ) ;

}
}
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Mixing Imperative and Declarative with SQUANDER

s t a t i c class Ce l l { i n t num = 0; } / / 0 means empty

@Invar iant ( " a l l v : i n t − 0 | lone { c : t h i s . c e l l s . va ls | c .num = v } " )
s t a t i c class CellGroup {

Ce l l [ ] c e l l s ;
public CellGroup ( i n t n ) { th is . c e l l s = new Ce l l [ n ] ; }

}

public class Sudoku {
i n t n ;
CellGroup [ ] rows , cols , g r i ds ;

public Sudoku ( i n t n ) {
/ / ( 1 ) c reate CellGroup and Ce l l ob jec ts ,
/ / ( 2 ) e s t a b l i s h shar ing o f Ce l l s between CellGroups
i n i t ( n ) ;

}

@Ensures ( " a l l c : Ce l l | c .num > 0 && c .num <= t h i s . n " )
@Modifies ( " Ce l l .num | _<1> = 0 " )
public void solve ( ) { Squander . exe ( th is ) ; }

public s t a t i c void main ( S t r i n g [ ] args ) {
Sudoku s = new Sudoku ( ) ;
s . rows [ 0 ] [ 3 ] . num = 1; s . rows [ 0 ] [ 7 ] . num = 9;
. . .
s . rows [ 8 ] [ 1 ] . num = 9; s . rows [ 8 ] [ 5 ] . num = 1;
s . so lve ( ) ;
System . out . p r i n t l n ( s ) ;

}
}

Write more imperative code
to make constraints simpler
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Everything is a relation

Everything is a relation
relation name relation type

classes  unary relations class C {}  Rc : C
objects  unary relations new C();  Rc1 : C
fields  binary relations class C { A fld ; }  Rfld : C→ A ∪ {null}
arrays  ternary relations T[]  RT []_elems : T[] → int → T ∪ {null}
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Minimizing the Universe Size

Relations in Kodkod

rk

a relation of arity k

M|univ |×|univ |×···×|univ |

a matrix of dim |univ |k

in Kodkod

so
if |univ |> 1291 ∧ (∃rk | k ≥ 3)

=⇒ dim(M)> 12913 = 2151685171 > Integer.MAX_VALUE

=⇒ can’t be represented in Kodkod

ternary relations are not uncommon in SQUANDER (e.g. arrays)
MIT course scheduler case study: almost 2000 objects
solution:

partitioning algorithm that allows atoms to be shared
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null

n1

n2 n3 t1

n4

0

1 5

6

BSTNode ∪ {null}
BST ∪ {null}

int

Minimizing the Universe
goal: use fewer Kodkod atoms than heap objects

→multiple objects must map to same atoms
→mapping from objects to atoms is not injective

also: must be able to unambiguously restore the heap
→ instances of the same type must map to distinct atoms

algorithm
1. discover all used types (clusters)

2. find the largest cluster

3. create that many atoms

4. assign atoms to instances

restoring field values (e.g. a0 for the field BSTNode.left)

1. based on the field’s type, select its cluster

2. select the instance from that cluster that maps to the given atom

n1 n2 n3 n4 null t1 0 1 5 6

a0 a1 a2 a3 a4

a0

n1
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Partitioning Algorithm – Discussion

Why is this algorithm sufficient?
what if we had partitions like this:

n2 n3
t1

null

n1 n4

BSTNode ∪ {null}

BST ∪ {null}

BSTNode ∪ BST

5 atoms would not be enough!

the algorithm would have to discover strongly
connected components

but, SQUANDER type checker disallows types
like BSTNode ∪ BST

or a spec like:

"no BSTNode & int"

if nodes and ints shared atoms, then the
intersection would not be empty!

again, in Java, such expressions don’t make
much sense, so SQUANDER disallows them.

Limitations
no performance gain

if a field of type Object is used, this algorithm has no effect
everything is a subtype of Object so everything has to go to the same partition
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