
ALLOY∗: General-Purpose Higher-Order
Relational Constraint Solver

Aleksandar Milicevic, Joseph P. Near,
Eunsuk Kang, Daniel Jackson

{aleks,jnear,eskang,dnj}@csail.mit.edu

ICSE 2015
Florence, Italy

1



What is ALLOY∗

ALLOY∗: a more powerful version of the alloy analyzer

alloy: general-purpose relational specification language
alloy analyzer: automated bounded solver for alloy

typical uses of the alloy analyzer
bounded software verification → but no software synthesis
analyze safety properties of event traces → but no liveness properties
find a safe full configuration → but not a safe partial conf
find an instance satisfying a property → but no min/max instance

higher-order

ALLOY∗

capable of automatically solving arbitrary higher-order formulas
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First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clqNodes: set Node |
clique[edges, clqNodes]

}

pred clique[edges: Node->Node, clqNodes: set Node] {
all disj n1, n2: clqNodes | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clqNodes = {n1,n3}
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First-Order Vs. Higher-Order: maxClique

higher-order: finding a graph and a maximal clique in it
there is no other clique with more nodes

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

pred maxClique[edges: Node->Node, clqNodes: set Node] {
clique[edges, clqNodes]
all ns: set Node |
not (clique[edges, ns] and #ns > #clqNodes)

}

run {
some edges: Node -> Node |
some clqNodes: set Node |
maxClique[edges, clqNodes]

}

expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms
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Solving maxClique Vs. Program Synthesis

program synthesis maxClique

find some program AST s.t.,
for all possible values of its inputs

its specification holds

find some set of nodes s.t., it is a clique and
for all possible other sets of nodes

not one is a larger clique

some program: ASTNode |
all env: Var -> Val |
spec[program, env]

some clq: set Node |
clique[clq] and
all ns: set Node |
not (clique[ns] and #ns > #clq)

similarities:
the same some/all (∃∀) pattern

the all quantifier is higher-order

how do existing program synthesizers work?
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CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.
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ALLOY∗

ALLOY∗ key insight

CEGIS can be applied to solve arbitrary higher-order formulas

generality
solve arbitrary higher-order formulas
no domain-specific knowledge needed

implementability
key solver features for efficient implementation:

– partial instances
– incremental solving

wide applicability (in contrast to specialized synthesizers)
program synthesis: SyGuS benchmarks
security policy synthesis: Margrave

solving graph problems: max-cut, max-clique, min-vertex-cover
bounded verification: Turán’s theorem

7
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Generality: Nested Higher-Order Quantifiers

fun keysum[nodes: set Node]: Int {
sum n: nodes | n.key

}

pred maxMaxClique[edges: Node->Node, clq: set Node] {
maxClique[edges, clq]
all ns: set Node |
not (maxClique[edges,clq2] and

keysum[ns] > keysum[clq])
}

run maxMaxClique for 5

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

$clq
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Generality: Checking Higher-Order Properties

// ‘edges’ must be symmetric and irreflexive
pred edgeProps[edges: Node -> Node] {
(~edges in edges) and (no edges & iden)

}

// Turan’s theorem: max number of edges in a

// (k+1)-free graph with n nodes is
(k−1)n2

2k
check Turan {
all edges: Node -> Node | edgeProps[edges] implies
some mClq: set Node {
maxClique[edges, mClq]
let n = #Node, k = #mClq, e = (#edges).div[2] |
e <= k.minus[1].mul[n].mul[n].div[2].div[k]

}
} for 7 but 0..294 Int

⋯
9



Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS
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ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”
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ALLOY∗ Optimization

2. domain constraints
“for all possible eval,

if the semantics hold then the spec
must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

logically equivalent, but, when “for” implemented as CEGIS:

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→

a valid candidate doesn’t have to
satisfy the semantics predicate!

7

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) when semantics[eval]
spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) when semantics[eval] |
spec[prog, eval]

→

a valid candidate must satisfy the
semantics predicate!

4
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ALLOY∗ Evaluation

evaluation goals

1. scalability on classical higher-order graph problems
? does ALLOY∗ scale beyond “toy-sized” graphs

2. applicability to program synthesis
? expressiveness: how many SyGuS benchmarks can be written in ALLOY∗

? power: how many SyGuS benchmarks can be solved with ALLOY∗

? scalability: how does ALLOY∗ compare to other synthesizers

3. benefits of the two optimizations
? do ALLOY∗ optimizations improve overall solving times
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Evaluation: Graph Algorithms
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Evaluation: Program Synthesis

expressiveness
we extended Alloy to support bit vectors

we encoded 123/173 benchmarks, i.e., all except “ICFP problems”
– reason for skipping ICFP: 64-bit bit vectors (not supported by Kodkod)
– (aside) not one of them was solved by any of the competition solvers

power
ALLOY∗ was able to solve all different categories of benchmarks

– integer benchmarks, bit vector benchmarks, let constructs, synthesizing multiple
functions at once, multiple applications of the synthesized function

scalability
many of the 123 benchmarks are either too easy or too difficult
→ not suitable for scalability comparison

we primarily used the integer benchmarks

we also picked a few bit vector benchmarks that were too hard for all solvers
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Evaluation: Program Synthesis

scalability comparison (integer benchmarks)
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scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞
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Evaluation: Benefits of ALLOY∗ Optimizations
base w/ optimizations

max2 0.4s 0.3s

max3 7.6s 0.9s

max4 t/o 1.5s

max5 t/o 4.2s

max6 t/o 16.3s

max7 t/o 163.6s

max8 t/o 987.3s

array-search2 140.0s 1.6s

array-search3 t/o 4.0s

array-search4 t/o 16.1s

array-search5 t/o 485.6s

base w/ optimizations
turan5 3.5s 0.5s

turan6 12.8s 2.1s

turan7 235.0s 3.8s

turan8 t/o 15.0s

turan9 t/o 45.0s

turan10 t/o 168.0s
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ALLOY∗ Conclusion

ALLOY∗ is
general purpose constraint solver
capable of efficiently solving arbitrary higher-order formulas
sound & complete within given bounds

higher-order and alloy historically
bit-blasting higher-order quantifiers: attempted, deemed intractable
previously many ad hoc mods to alloy

– aluminum, razor, staged execution, ...

why is this important?
accessible to wider audience, encourages new applications

potential impact
– abundance of tools that build on Alloy/Kodkod, for testing, program

analysis, security, bounded verification, executable specifications, ...

Thank You!
http://alloy.mit.edu/alloy/hola
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First-Order Vs. Higher-Order: clique

first-order: finding a clique in a graph

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges // every two nodes in ’clq’ are connected

}

run { // find a clique in a given graph
let edges = n1->n2 + n1->n3 + . . . |
some clq: set Node | clique[edges, clq]

}

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

N1: {n1} N2: {n2} N3: {n3} N4: {n4} atoms

Alloy encoding:

Node: {n1,n2,n3 ,n4}
key: {(n1 → 5),(n2 → 0),(n3 → 6),(n4 → 1)}
edges: {(n1 → n2),(n1 → n3),(n1 → n4),(n2 → n3),(n2 → n4),

(n2 → n1),(n3 → n1),(n4 → n1),(n3 → n2),(n4 → n2)}

fixed
relations

clq: {}, {n1 ,n2 ,n3,n4}
relations
to be solved

lower bound upper bound → set of nodes: efficiently translated to SAT
(one bit for each node)

a solution (automatically found by Alloy): clq = {n1,n3}
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}

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

N1: {n1} N2: {n2} N3: {n3} N4: {n4} atoms

Alloy encoding:
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First-Order Vs. Higher-Order: maxClique

higher-order: finding a maximal clique in a graph

pred maxClique[edges: Node->Node, clq: set Node] {
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key: 6

n4
key: 1
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expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms

maxClique: check all possible sets of nodes
and ensure not one is a clique larger than clq

7 number of bits required for direct encoding to
SAT: 2#Node
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Solving maxClique: Idea

run {
some clq: set Node |
clique[edges, clq] and
all ns: set Node |
not (clique[edges, ns] and #ns > #clq)

}

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

some clq: Set Node |
clique[edges, clq] and
#clq >= 3

some ns: Set Node |
clique[edges, ns] and #ns > 2

some ns: Set Node |
clique[edges, ns] and #ns > 3

UNSAT Ð→ return $clq

intuitive iterative algorithm

1. find some clique $clq

2. check if $clq is maximal
⇔ find some clique $ns > $clq from step 1

– if not found: return $clq

3. assert that every new $clq must be ≥ than $ns from step 2;
goto step 1
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CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.
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Program Synthesis with ALLOY∗

AST nodes

abstract sig Node {}
abstract sig IntNode, BoolNode extends Node {}
abstract sig Var extends IntNode {}

sig ITE extends IntNode {
cond: one BoolNode,
then: one IntNode,
elsen: one IntNode

}

sig GTE extends BoolNode {
left: one IntNode,
right: one IntNode

}

program semantics

fact acyclic {
all x: Node | x !in x.^(cond+then+elsen+left+right)

}

pred semantics[eval: Node -> (Int+Bool)] {
all n: IntNode | one eval[n] and eval[n] in Int
all n: BoolNode | one eval[n] and eval[n] in Bool
all n: ITE |
eval[n.cond] = True implies
eval[n.then] = eval[n] else eval[n.elsen] = eval[n]

all n: GTE |
eval[n.left] >= eval[n.right] implies
eval[n] = True else eval[n] = False

}

generic synthesis predicate

// for all ’eval’ relations for which the
// semantics hold, the spec must hold as well
pred synth[root: Node] {
all env: Var -> one Int |
some eval: Node -> (Int+Bool) |
env in eval and
semantics[eval] and
spec[root, eval]

}

spec for max2 (the only benchmark-specific part)

one sig X, Y extends Var {}

// the result is equal to either X or Y and
// is greater or equal than both
pred spec[root: Node, eval: Node -> (Int+Bool)] {
(eval[root] = eval[X] or eval[root] = eval[Y]) and
(eval[root] >= eval[X] and eval[root] >= eval[Y])

}
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ALLOY∗ Execution: Example

1. candidate search
facts[] and
some prog: Node |
all env: Var -> one Int |
some eval: Node -> (Int+Bool) |
env in eval and
semantics[eval] and
spec[prog, eval]

// NNF + skolemized
facts[] and $prog in Node and
all env: Var -> one Int |
some eval: Node -> (Int+Bool) |
env in eval and
semantics[eval] and
spec[$prog, eval]

// converted to Proc

E
A
(conj: facts[] and $prog in Node,
// used for search
eQuant: some env | some eval . . . ,
// used for verification
aQuant: all env | some eval . . . )

2. verification
not(all env: Var -> one Int |
some eval: Node -> (Int+Bool) |
env in eval and
semantics[eval] and
spec[$prog, eval])

implemented as
“partial instance”
implemented as
“partial instance”

// NNF + skolemized
$env in Node -> Int
all eval: Node -> (Int+Bool) |
!($env in eval) or
!semantics[eval] or
!spec[$prog, eval]

// converted to Proc

E
A
(conj: $env in Node -> Int,
// used for search
eQuant: some eval . . . ,
// used for verification
aQuant: all eval . . . )

3. induction
facts[] and
some prog: Node |
some env: Var -> one Int |
(some eval: Node -> (Int+Bool) |
env in eval && semantics[eval] && spec[prog, eval]) and

(some eval: Node -> (Int+Bool) |
$env_cex in eval && semantics[eval] && spec[prog, eval])

• body of aQuant from step 1 with env re-
placed
• by the concrete value ($env_cex) from step 2
• implemented using “incremental solving”

• body of aQuant from step 1 with env re-
placed
• by the concrete value ($env_cex) from step 2
• implemented using “incremental solving”
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Semantics: General Idea

1. convert formula to Negation Normal Form (NNF)
→ boolean connectives left: ∧, ∨, ¬
→ negation pushed to leaf nodes
→ no negated quantifiers

2. perform skolemization
→ top-level ∃ quantifiers replaced by skolem variables (relations)

3. decompose formula into a tree of FOL, OR, and E
A

nodes
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

4. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS
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Semantics: Formula Decomposition

type Proc = FOL(form: Formula) // first-order formula

| OR(disjs: Proc list) // list of disjuncts (at least some should be higher-order)

| E
A
(conj: FOL, // first-order conjuncts (alongside the higher-order ∀ quantifier)

allForm: Formula, // original ∀x⋅f formula

existsProc: Proc) // translation of the dual ∃ formula (T (∃x⋅f))

T : Formula → Proc // translates arbitrary formula to a tree of Procs

let T = λ (f ) ⋅
let fnnf = skolemize(nnf (f ))
match fnnf with

| ¬fs → FOL(fnnf )
| ∃x ⋅ fs → fail "can’t happen"
| ∀x ⋅ fs → let p = T (∃x ⋅ fs)

if (x.mult = SET) ∣∣ ¬(p is FOL)
E
A
(FOL(true), fnnf , p)

else

FOL(fnnf )
| f1∨ f2 → OR([T (f1), T (f2)])
| f1∧ f2 → T (f1) ⋏ T (f2)
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convert to NNF and skolemize
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translating negation

negation can be only in leaves

⇒ must be first-order
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translating the ∃ quantifier

there can’t be top-level ∃
quantifiers after skolemization
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Semantics: Formula Evaluation

S : Proc → Instance option

let S = λ (p) ⋅

match p with

| FOL → solve p.form
| OR → ... // apply S to each Proc in p.disj; return the first solution found

| E
A → let pcand = p.conj ⋏ p.existsProc

match S(pcand) with

| None → None // no candidate solution found⇒ return UNSAT

| Some(cand) → // candidate solution found⇒ proceed to verify the candidate

match S(T (¬p.allForm)) with // try to falsify cand⇒ must run S against the cand instance

| None → Some(cand) // no counterexample found⇒ cand is the solution

| Some(cex) → let q = p.allForm
// encode the counterexample as a formula: use only the body of the ∀ quant.
// in which the quant. variable is replaced with its concrete value in cex

let fcex = replace(q.body, q.var, eval(cex, q.var))
// add the counterexample encoding to the candidate search condition
S(pcand ⋏ T (fcex))

partial instance
encode cand as partial instance

counterexample encoding
no domain-specific knowledge necessary

incremental solving
add T (fcex) to the existing S(pcand ) solver
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Optimization 1: Domain Constraints

problem: domain for eval too unconstrained
pred synth[root: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[root, eval]

}

→ candidate search condition:
some root: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[root, eval]

a valid candidate doesn’t have to satisfy the semantics predicate!

although logically correct, takes too many steps to converge
“for all possible eval,

if the semantics hold then the
spec must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

solution: add new syntax for domain constraints
pred synth[root: Node] {
all eval: Node -> (Int+Bool)
when semantics[eval] |
spec[root, eval]

}
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Domain Constraints Semantics

first-order logic semantics
all x: X when dom[x] | body[x] ⇐⇒ all x: X | dom[x] implies body[x]

some x: X when dom[x] | body[x] ⇐⇒ some x: X | dom[x] and body[x]

De Morgan’s Laws (consistent with classical logic)
not (all x: X when dom[x] | body[x]) ⇐⇒ some x: X when dom[x] | not body[x]

not (some x: X when dom[x] | body[x]) ⇐⇒ all x: X when dom[x] | not body[x]

changes to the ALLOY∗ semantics
converting higher-order ∀ to ∃: ∀x ⋅ f → ∃x ⋅ f (domain constraints stay with x)

encoding a counterexample as a formula: in

let fcex = replace(q.body, q.var, eval(cex, q.var))

q.body is expanded according to the first-order semantics above
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Optimization 2: First-Order Increments

problem: search space too big, counterexamples not focused
pred synth[root: Node] {
all eval: Node -> (Int+Bool)
when semantics[eval] |
spec[root, eval]

}

→
quantifies over evaluations of Nodes instead of only Vars

counterexamples encode entire eval relation,
instead of only values of variables

idea: rewrite the synth predicate to separate env from eval

pred synth[root: Node] {
all env: Var -> one Int |
some eval: Node -> (Int+Bool)
when env in eval && semantics[eval] |
spec[root, eval]

}

consequence: higher-order verification
not (all env: Var -> one Int |
some eval: Node -> (Int+Bool)
when env in eval && semantics[eval] |
spec[$root, eval])

⇔
some env: Var -> one Int |
all eval: Node -> (Int+Bool)
when env in eval && semantics[eval] |
not spec[$root, eval]

nested CEGIS loops 4

higher-order counterexample encoding
→ cannot use incremental solving 7

solution: force counterexample encodings to be first order
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First-Order Increments Semantics

always translate the counterexample encoding formula to FOL

S(pcand ⋏T (fcex))→

S(pcand ⋏Tfo(fcex))

apply the same idea of flipping ∀ to ∃ to implement Tfo
// Tfo ∶ Formula → FOL
let Tfo(f) = match p = T (f ) with

| FOL → p
| E

A → p.conj⋏Tfo(p.existsProc)
| OR → FOL(reduce ∨, (map Tfo, p.disjs).form)

Tfo produces strictly less constrained encoding

potential trade-off:
– efficient incremental solving vs.
– more CEGIS iterations (due to weaker encoding)
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