
Advancing Declarative Programming

Aleksandar Milicevic
Massachusetts Institute of Technology

May 07, 2015

1

What is Declarative Programming?

say what , not how

describe what the program is intended to do
in some terms that are both expressive and easy to use

“It would be very nice to input this description into some suitably
programmed computer, and get the computer to translate it
automatically into a subroutine”

- C. A. R. Hoare [“An overview of some formal methods for program design”, 1987]

2

What is Declarative Programming?

say what , not how

describe what the program is intended to do
in some terms that are both expressive and easy to use

“It would be very nice to input this description into some suitably
programmed computer, and get the computer to translate it
automatically into a subroutine”

- C. A. R. Hoare [“An overview of some formal methods for program design”, 1987]

2

What is Declarative Programming?

say what , not how

describe what the program is intended to do
in some terms that are both expressive and easy to use

“It would be very nice to input this description into some suitably
programmed computer, and get the computer to translate it
automatically into a subroutine”

- C. A. R. Hoare [“An overview of some formal methods for program design”, 1987]

2

Spectrum of The Declarative Programming Space

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

3

Spectrum of The Declarative Programming Space

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

3

Spectrum of The Declarative Programming Space

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

3

Spectrum of The Declarative Programming Space

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

3

Spectrum of The Declarative Programming Space

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

3

ALLOY∗: Higher-Order Constraint Solving

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

4

What is ALLOY∗

ALLOY∗: a more powerful version of the alloy analyzer

typical uses of the alloy analyzer
bounded software verification → but no software synthesis
analyze safety properties of event traces → but no liveness properties
find a safe full configuration → but not a safe partial conf
find an instance satisfying a property → but no min/max instance

higher-order

ALLOY∗

capable of automatically solving arbitrary higher-order formulas

5

What is ALLOY∗

ALLOY∗: a more powerful version of the alloy analyzer

typical uses of the alloy analyzer
bounded software verification → but no software synthesis
analyze safety properties of event traces → but no liveness properties
find a safe full configuration → but not a safe partial conf
find an instance satisfying a property → but no min/max instance

higher-order

ALLOY∗

capable of automatically solving arbitrary higher-order formulas

5

What is ALLOY∗

ALLOY∗: a more powerful version of the alloy analyzer

typical uses of the alloy analyzer
bounded software verification → but no software synthesis
analyze safety properties of event traces → but no liveness properties
find a safe full configuration → but not a safe partial conf
find an instance satisfying a property → but no min/max instance

higher-order

ALLOY∗

capable of automatically solving arbitrary higher-order formulas

5

What is ALLOY∗

ALLOY∗: a more powerful version of the alloy analyzer

typical uses of the alloy analyzer
bounded software verification → but no software synthesis
analyze safety properties of event traces → but no liveness properties
find a safe full configuration → but not a safe partial conf
find an instance satisfying a property → but no min/max instance

higher-order

ALLOY∗

capable of automatically solving arbitrary higher-order formulas

5

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}

6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}

6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}

6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}

6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}

6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}
6

First-Order Vs. Higher-Order: clique

first-order: finding a graph and a clique in it
every two nodes in a clique must be connected

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

sig Node { key: one Int }

run {
some edges: Node -> Node |
some clq: set Node |
clique[edges, clq]

}

pred clique[edges: Node->Node, clq: set Node] {
all disj n1, n2: clq | n1->n2 in edges

}

Alloy Analyzer: automatic, bounded, relational constraint solver

a solution (automatically found by Alloy): clq = {n1,n3}
6

First-Order Vs. Higher-Order: maxClique

higher-order: finding a graph and a maximal clique in it
there is no other clique with more nodes

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

pred maxClique[edges: Node->Node, clq: set Node] {
clique[edges, clq]
all ns: set Node |
not (clique[edges, ns] and #ns > #clq)

}

run {
some edges: Node -> Node |
some clq: set Node |
maxClique[edges, clq]

}

expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms

7

First-Order Vs. Higher-Order: maxClique

higher-order: finding a graph and a maximal clique in it
there is no other clique with more nodes

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

pred maxClique[edges: Node->Node, clq: set Node] {
clique[edges, clq]
all ns: set Node |
not (clique[edges, ns] and #ns > #clq)

}

run {
some edges: Node -> Node |
some clq: set Node |
maxClique[edges, clq]

}

expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms

7

First-Order Vs. Higher-Order: maxClique

higher-order: finding a graph and a maximal clique in it
there is no other clique with more nodes

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

pred maxClique[edges: Node->Node, clq: set Node] {
clique[edges, clq]
all ns: set Node |
not (clique[edges, ns] and #ns > #clq)

}

run {
some edges: Node -> Node |
some clq: set Node |
maxClique[edges, clq]

}

expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms

7

First-Order Vs. Higher-Order: maxClique

higher-order: finding a graph and a maximal clique in it
there is no other clique with more nodes

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

pred maxClique[edges: Node->Node, clq: set Node] {
clique[edges, clq]
all ns: set Node |
not (clique[edges, ns] and #ns > #clq)

}

run {
some edges: Node -> Node |
some clq: set Node |
maxClique[edges, clq]

}

expressible but not solvable in Alloy!

definition of higher-order (as in Alloy):
– quantification over all sets of atoms

7

Solving maxClique Vs. Program Synthesis

program synthesis maxClique

find some program AST s.t.,
for all possible values of its inputs

its specification holds

find some set of nodes s.t., it is a clique and
for all possible other sets of nodes

not one is a larger clique

some program: ASTNode |
all env: Var -> Val |
spec[program, env]

some clq: set Node |
clique[clq] and
all ns: set Node |
not (clique[ns] and #ns > #clq)

similarities:
the same some/all (∃∀) pattern

the all quantifier is higher-order

how do existing program synthesizers work?

8

Solving maxClique Vs. Program Synthesis

program synthesis maxClique

find some program AST s.t.,
for all possible values of its inputs

its specification holds

find some set of nodes s.t., it is a clique and
for all possible other sets of nodes

not one is a larger clique

some program: ASTNode |
all env: Var -> Val |
spec[program, env]

some clq: set Node |
clique[clq] and
all ns: set Node |
not (clique[ns] and #ns > #clq)

similarities:
the same some/all (∃∀) pattern

the all quantifier is higher-order

how do existing program synthesizers work?

8

Solving maxClique Vs. Program Synthesis

program synthesis maxClique

find some program AST s.t.,
for all possible values of its inputs

its specification holds

find some set of nodes s.t., it is a clique and
for all possible other sets of nodes

not one is a larger clique

some program: ASTNode |
all env: Var -> Val |
spec[program, env]

some clq: set Node |
clique[clq] and
all ns: set Node |
not (clique[ns] and #ns > #clq)

similarities:
the same some/all (∃∀) pattern

the all quantifier is higher-order

how do existing program synthesizers work?

8

CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.

9

CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.

9

CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.

9

CEGIS: A Common Approach for Program Synthesis

original synthesis formulation
run { some prog: ASTNode | all env: Var -> Val | spec[prog, env] }

Counter-Example Guided Inductive Synthesis [Solar-Lezama, ASPLOS’06]

1. search: find some program and some environment s.t. the spec holds, i.e.,
run { some prog: ASTNode | some env: Var -> Val | spec[prog, env] }

to get a concrete candidate program $prog

2. verification: check if $prog holds for all possible environments:
check { all env: Var -> Val | spec[$prog, env] }

Done if verified; else, a concrete counterexample $env is returned as witness.

3. induction: incrementally find a new program that additionally satisfies $env:
run { some prog: ASTNode |

some env: Var -> Val | spec[prog, env] and spec[prog, $env]}

If UNSAT, return no solution; else, go to 2.

9

ALLOY∗

ALLOY∗ key insight

CEGIS can be applied to solve arbitrary higher-order formulas

generality
solve arbitrary higher-order formulas
no domain-specific knowledge needed

implementability
key solver features for efficient implementation:

– partial instances
– incremental solving

wide applicability (in contrast to specialized synthesizers)
program synthesis: SyGuS benchmarks
security policy synthesis: Margrave

solving graph problems: max-cut, max-clique, min-vertex-cover
bounded verification: Turán’s theorem

10

ALLOY∗

generality
solve arbitrary higher-order formulas
no domain-specific knowledge needed

implementability
key solver features for efficient implementation:

– partial instances
– incremental solving

wide applicability (in contrast to specialized synthesizers)

program synthesis: SyGuS benchmarks

security policy synthesis: Margrave

solving graph problems: max-cut, max-clique, min-vertex-cover

bounded verification: Turán’s theorem

10

ALLOY∗

generality
solve arbitrary higher-order formulas
no domain-specific knowledge needed

implementability
key solver features for efficient implementation:

– partial instances
– incremental solving

wide applicability (in contrast to specialized synthesizers)

program synthesis: SyGuS benchmarks

security policy synthesis: Margrave

solving graph problems: max-cut, max-clique, min-vertex-cover

bounded verification: Turán’s theorem

10

ALLOY∗

generality
solve arbitrary higher-order formulas
no domain-specific knowledge needed

implementability
key solver features for efficient implementation:

– partial instances
– incremental solving

wide applicability (in contrast to specialized synthesizers)

program synthesis: SyGuS benchmarks

security policy synthesis: Margrave

solving graph problems: max-cut, max-clique, min-vertex-cover

bounded verification: Turán’s theorem

10

Generality: Nested Higher-Order Quantifiers

fun keysum[nodes: set Node]: Int {
sum n: nodes | n.key

}

pred maxMaxClique[edges: Node->Node, clq: set Node] {
maxClique[edges, clq]
all ns: set Node |
not (maxClique[edges,clq2] and

keysum[ns] > keysum[clq])
}

run maxMaxClique for 5

n1
key: 5

n2
key: 0

n3
key: 6

n4
key: 1

edges

$clq

11

Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS

12

Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS

12

Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS

12

Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS

12

Semantics: General Idea

CEGIS: defined only for a single idiom (the ∃∀ formula pattern)

ALLOY∗: generalized to arbitrary formulas

1. perform standard transformation: NNF and skolemization

2. decompose arbitrary formula into known idioms
→ FOL : first-order formula
→ OR : disjunction
→ E

A
: higher-order top-level ∀ quantifier (not skolemizable)

3. solve using the following decision procedure
→ FOL : solve directly with Kodkod (first-order relational solver)
→ OR : solve each disjunct separately
→ E

A
: apply CEGIS

12

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation

partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Implementation Caveats
some prog: Node |
acyclic[prog]
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→
E
A
(conj: $prog in Node and acyclic[$prog],

eQuant: some eval ...,

aQuant: all eval ...)

1. candidate search
solve conj ∧ eQuant

→ candidate instance $cand: values of all relations except eQuant.var

2. verification
solve ¬aQuant against the $cand partial instance

→ counterexample $cex: value of the eQuant.var relation
partial instance
• partial solution known upfront
• enforced using bounds

3. induction
use incremental solving to add

replace eQuant.var with $cex in eQuant.body
to previous search condition

incremental solving
• continue from prev solver instance
• the solver reuses learned clauses

? what if the increment formula is not first-order
– optimization 1: use its weaker “first-order version”

13

ALLOY∗ Optimization

2. domain constraints
“for all possible eval,

if the semantics hold then the spec
must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

logically equivalent, but, when “for” implemented as CEGIS:

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→

a valid candidate doesn’t have to
satisfy the semantics predicate!

7

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) when semantics[eval]
spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) when semantics[eval] |
spec[prog, eval]

→

a valid candidate must satisfy the
semantics predicate!

4

14

ALLOY∗ Optimization

2. domain constraints
“for all possible eval,

if the semantics hold then the spec
must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

logically equivalent, but, when “for” implemented as CEGIS:

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→

a valid candidate doesn’t have to
satisfy the semantics predicate!

7

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) when semantics[eval]
spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) when semantics[eval] |
spec[prog, eval]

→

a valid candidate must satisfy the
semantics predicate!

4

14

ALLOY∗ Optimization

2. domain constraints
“for all possible eval,

if the semantics hold then the spec
must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

logically equivalent, but, when “for” implemented as CEGIS:

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→

a valid candidate doesn’t have to
satisfy the semantics predicate!

7

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) when semantics[eval]
spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) when semantics[eval] |
spec[prog, eval]

→

a valid candidate must satisfy the
semantics predicate!

4

14

ALLOY∗ Optimization

2. domain constraints
“for all possible eval,

if the semantics hold then the spec
must hold”

vs. “for all eval that satisfy the semantics,
the spec must hold”

logically equivalent, but, when “for” implemented as CEGIS:

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) |
semantics[eval] implies spec[prog, eval]

→

a valid candidate doesn’t have to
satisfy the semantics predicate!

7

pred synth[prog: Node] {
all eval: Node -> (Int+Bool) when semantics[eval]
spec[prog, eval]

}

→

candidate search

some prog: Node |
some eval: Node -> (Int+Bool) when semantics[eval] |
spec[prog, eval]

→

a valid candidate must satisfy the
semantics predicate!

4
14

ALLOY∗ Evaluation

evaluation goals

1. scalability on classical higher-order graph problems
? does ALLOY∗ scale beyond “toy-sized” graphs

2. applicability to program synthesis
? expressiveness: how many SyGuS benchmarks can be written in ALLOY∗

? power: how many SyGuS benchmarks can be solved with ALLOY∗

? scalability: how does ALLOY∗ compare to other synthesizers

3. benefits of the two optimizations
? do ALLOY∗ optimizations improve overall solving times

15

ALLOY∗ Evaluation

evaluation goals
1. scalability on classical higher-order graph problems

? does ALLOY∗ scale beyond “toy-sized” graphs

2. applicability to program synthesis
? expressiveness: how many SyGuS benchmarks can be written in ALLOY∗

? power: how many SyGuS benchmarks can be solved with ALLOY∗

? scalability: how does ALLOY∗ compare to other synthesizers

3. benefits of the two optimizations
? do ALLOY∗ optimizations improve overall solving times

15

ALLOY∗ Evaluation

evaluation goals
1. scalability on classical higher-order graph problems

? does ALLOY∗ scale beyond “toy-sized” graphs

2. applicability to program synthesis
? expressiveness: how many SyGuS benchmarks can be written in ALLOY∗

? power: how many SyGuS benchmarks can be solved with ALLOY∗

? scalability: how does ALLOY∗ compare to other synthesizers

3. benefits of the two optimizations
? do ALLOY∗ optimizations improve overall solving times

15

ALLOY∗ Evaluation

evaluation goals
1. scalability on classical higher-order graph problems

? does ALLOY∗ scale beyond “toy-sized” graphs

2. applicability to program synthesis
? expressiveness: how many SyGuS benchmarks can be written in ALLOY∗

? power: how many SyGuS benchmarks can be solved with ALLOY∗

? scalability: how does ALLOY∗ compare to other synthesizers

3. benefits of the two optimizations
? do ALLOY∗ optimizations improve overall solving times

15

Evaluation: Graph Algorithms

0	

10	

20	

30	

40	

50	

60	

70	

80	

2	
 3	
 5	
 7	
 9	
 13	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

So
lv

in
g

Ti
m

e
(s

)

Nodes

max clique

max cut

max indep. set

min vertex cover

16

Evaluation: Program Synthesis

expressiveness
we extended Alloy to support bit vectors

we encoded 123/173 benchmarks, i.e., all except “ICFP problems”
– reason for skipping ICFP: 64-bit bit vectors (not supported by Kodkod)
– (aside) not one of them was solved by any of the competition solvers

power
ALLOY∗ was able to solve all different categories of benchmarks

– integer benchmarks, bit vector benchmarks, let constructs, synthesizing multiple
functions at once, multiple applications of the synthesized function

scalability
many of the 123 benchmarks are either too easy or too difficult
→ not suitable for scalability comparison

we primarily used the integer benchmarks

we also picked a few bit vector benchmarks that were too hard for all solvers

17

Evaluation: Program Synthesis

scalability comparison (integer benchmarks)

 0.01

 0.1

 1

 10

 100

 1000

max-2 max-3 max-4 max-5 array-2 array-3 array-4 array-5

S
o

lv
in

g
 T

im
e

 (
s
)

Alloy*
Enumerative

Stochastic
Symbolic

Sketch

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Program Synthesis

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Program Synthesis

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Program Synthesis

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Program Synthesis

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Program Synthesis

scalability comparison (select bit vector benchmarks)

benchmarks
– parity-AIG-d1: full parity circuit using AND and NOT gates
– parity-NAND-d1: full parity circuit using AND always followed by NOT

all solvers (including ALLOY∗) time out on both (limit: 1000s)

custom tweaks in ALLOY∗ synthesis models:
– create and use a single type of gate
– impose partial ordering between gates

parity-AIG-d1

sig AIG extends BoolNode {
left, right: one BoolNode
invLhs, invRhs, invOut: one Bool

}
pred aig_semantics[eval: Node->(Int+Bool)] {
all n: AIG |
eval[n] = ((eval[n.left] ^ n.invLhs) &&

(eval[n.right] ^ n.invRhs)
) ^ n.invOut}

run synth for 0 but -1..0 Int, exactly 15 AIG

parity-NAND-d1

sig NAND extends BoolNode {
left, right: one BoolNode

}

pred nand_semantics[eval: Node->(Int+Bool)] {
all n: NAND |
eval[n] = !(eval[n.left] &&

eval[n.right])
}
run synth for 0 but -1..0 Int, exactly 23 NAND

solving time w/ partial ordering: 20s
solving time w/o partial ordering: 80s

solving time w/ partial ordering: 30s
solving time w/o partial ordering: ∞

18

Evaluation: Benefits of ALLOY∗ Optimizations
base w/ optimizations

max2 0.4s 0.3s

max3 7.6s 0.9s

max4 t/o 1.5s

max5 t/o 4.2s

max6 t/o 16.3s

max7 t/o 163.6s

max8 t/o 987.3s

array-search2 140.0s 1.6s

array-search3 t/o 4.0s

array-search4 t/o 16.1s

array-search5 t/o 485.6s

base w/ optimizations
turan5 3.5s 0.5s

turan6 12.8s 2.1s

turan7 235.0s 3.8s

turan8 t/o 15.0s

turan9 t/o 45.0s

turan10 t/o 168.0s

19

ALLOY∗ Conclusion

ALLOY∗ is
general purpose constraint solver
capable of efficiently solving arbitrary higher-order formulas
sound & complete within given bounds

higher-order and alloy historically
bit-blasting higher-order quantifiers: attempted, deemed intractable
previously many ad hoc mods to alloy

– aluminum, razor, staged execution, ...

why is this important?

accessible to wider audience, encourages new applications

potential impact
– abundance of tools that build on Alloy/Kodkod, for testing, program

analysis, security, bounded verification, executable specifications, ...

20

ALLOY∗ Conclusion

ALLOY∗ is
general purpose constraint solver
capable of efficiently solving arbitrary higher-order formulas
sound & complete within given bounds

higher-order and alloy historically
bit-blasting higher-order quantifiers: attempted, deemed intractable
previously many ad hoc mods to alloy

– aluminum, razor, staged execution, ...

why is this important?

accessible to wider audience, encourages new applications

potential impact
– abundance of tools that build on Alloy/Kodkod, for testing, program

analysis, security, bounded verification, executable specifications, ...

20

ALLOY∗ Conclusion

ALLOY∗ is
general purpose constraint solver
capable of efficiently solving arbitrary higher-order formulas
sound & complete within given bounds

higher-order and alloy historically
bit-blasting higher-order quantifiers: attempted, deemed intractable
previously many ad hoc mods to alloy

– aluminum, razor, staged execution, ...

why is this important?

accessible to wider audience, encourages new applications

potential impact
– abundance of tools that build on Alloy/Kodkod, for testing, program

analysis, security, bounded verification, executable specifications, ...

20

SUNNY: Model-Based Reactive Web Framework

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

executable
specs for java

program
synthesis

(my previous work)

[ABZ’12,SCP’14,ICSE’15]

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

[Onward’13]

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

[ABZ’14]

• unified specification &
implementation language

21

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

22

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

22

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

22

Conceptually simple, but in practice...

distributed system
concurrency issues
keeping everyone updated

heterogeneous environment
rails + javascript + ajax + jquery + ...
html + erb + css + sass + scss + bootstrap + ...
db + schema + server config + routes + ...

abstraction gap
high-level problem domain
low-level implementation level

23

Conceptually simple, but in practice...

distributed system
concurrency issues
keeping everyone updated

heterogeneous environment
rails + javascript + ajax + jquery + ...
html + erb + css + sass + scss + bootstrap + ...
db + schema + server config + routes + ...

abstraction gap
high-level problem domain
low-level implementation level

23

Conceptually simple, but in practice...

distributed system
concurrency issues
keeping everyone updated

heterogeneous environment
rails + javascript + ajax + jquery + ...
html + erb + css + sass + scss + bootstrap + ...
db + schema + server config + routes + ...

abstraction gap
high-level problem domain
low-level implementation level

23

Conceptually simple, but in practice...

distributed system
concurrency issues
keeping everyone updated

heterogeneous environment
rails + javascript + ajax + jquery + ...
html + erb + css + sass + scss + bootstrap + ...
db + schema + server config + routes + ...

abstraction gap
high-level problem domain
low-level implementation level

23

Conceptually simple, but in practice...

distributed system
concurrency issues
keeping everyone updated

heterogeneous environment
rails + javascript + ajax + jquery + ...
html + erb + css + sass + scss + bootstrap + ...
db + schema + server config + routes + ...

abstraction gap
high-level problem domain
low-level implementation level

23

MDD: how far can it get us?

exercise:
sketch out a model (design, spec)

for the Sunny IRC application

24

Sunny IRC: data model

user class User
inherited: name, email: Text

salute: ()-> "Hi #{this.name}"

record class Msg
text: Text
sender: User
time: Val

record class ChatRoom
name: Text
members: set User
messages: compose set Msg

record: automatically persisted objects with typed fields

user: special kind of record, assumes certain fields, auth, etc.

set: denotes non-scalar (set) type

compose: denotes ownership, deletion propagation, etc.

25

Sunny IRC: machine model

client class Client
user: User

server class Server
rooms: compose set ChatRoom

client: special kind of record, used to represent client machines

server: special kind of record, used to represent the server machine

26

Sunny IRC: event model

event class SendMsg
from: client: Client
to: server: Server

params:
room: ChatRoom
msgText: Text

requires: () ->
return "must log in!" unless this.client?.user
return "must join room!" unless this.room?.members.contains(this.client.user)

ensures: () ->
this.room.messages.push Msg.create(sender: this.client.user

text: this.msgText
time: Date.now())

to, from: sender and receiver machines
params: event parameters
requires: event precondition
ensures: event handler (postcondition)

27

Modeling done. What next?

challenge
how to make the most of this model?

goal
make the model executable as much as possible!

28

Modeling done. What next?

challenge
how to make the most of this model?

goal
make the model executable as much as possible!

28

Traditional MVC Approach

boilerplate:
write a matching DB schema
turn each record into a resource (model class)
turn each event into a controller and implement the CRUD
operations
configure URL routes for each resource

aesthetics:
design and implement a nice looking HTML/CSS presentation

to make it interactive:
decide how to implement server push
keep track of who’s viewing what
monitor resource accesses
push changes to clients when resources are modified
implement client-side Javascript to accept pushed changes and
dynamically update the DOM

29

Traditional MVC Approach

boilerplate:
write a matching DB schema
turn each record into a resource (model class)
turn each event into a controller and implement the CRUD
operations
configure URL routes for each resource

aesthetics:
design and implement a nice looking HTML/CSS presentation

to make it interactive:
decide how to implement server push
keep track of who’s viewing what
monitor resource accesses
push changes to clients when resources are modified
implement client-side Javascript to accept pushed changes and
dynamically update the DOM

29

Traditional MVC Approach

boilerplate:
write a matching DB schema
turn each record into a resource (model class)
turn each event into a controller and implement the CRUD
operations
configure URL routes for each resource

aesthetics:
design and implement a nice looking HTML/CSS presentation

to make it interactive:
decide how to implement server push
keep track of who’s viewing what
monitor resource accesses
push changes to clients when resources are modified
implement client-side Javascript to accept pushed changes and
dynamically update the DOM

29

Traditional MVC Approach

boilerplate:
write a matching DB schema
turn each record into a resource (model class)
turn each event into a controller and implement the CRUD
operations
configure URL routes for each resource

aesthetics:
design and implement a nice looking HTML/CSS presentation

to make it interactive:
decide how to implement server push
keep track of who’s viewing what
monitor resource accesses
push changes to clients when resources are modified
implement client-side Javascript to accept pushed changes and
dynamically update the DOM

29

Traditional MVC Approach

boilerplate:
write a matching DB schema
turn each record into a resource (model class)
turn each event into a controller and implement the CRUD
operations
configure URL routes for each resource

aesthetics:
design and implement a nice looking HTML/CSS presentation

to make it interactive:
decide how to implement server push
keep track of who’s viewing what
monitor resource accesses
push changes to clients when resources are modified
implement client-side Javascript to accept pushed changes and
dynamically update the DOM

29

SUNNY demo

demo: responsive GUI without messing with javascript

30

GUIs in SUNNY: dynamic templates

like standard templating engine with data bindings
automatically re-rendered when the model changes

online_users.html

<div>
{{#each Server.onlineClients.user}}
{{> user_tpl user=this}}

{{/each}}
</div>

31

GUIs in SUNNY: dynamic templates

like standard templating engine with data bindings
automatically re-rendered when the model changes

online_users.html

<div>
{{#each Server.onlineClients.user}}
{{> user_tpl user=this}}

{{/each}}
</div>

31

GUIs in SUNNY: binding to events

room_tpl.html

<div {{SendMsg room=this.room}} >
<div>
<input type="text" name="text"

placeholder="Enter message"
{{SendMsg_msgText}}
{{sunny_trigger}} />

</div>
<button {{sunny_trigger}}>Send</button>

</div>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need for any Ajax requests/responses

– the data-binding mechanism will automatically kick in

32

GUIs in SUNNY: binding to events
room_tpl.html

<div {{SendMsg room=this.room}} >
<div>
<input type="text" name="text"

placeholder="Enter message"
{{SendMsg_msgText}}
{{sunny_trigger}} />

</div>
<button {{sunny_trigger}}>Send</button>

</div>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need for any Ajax requests/responses

– the data-binding mechanism will automatically kick in

32

GUIs in SUNNY: binding to events
room_tpl.html

<div {{SendMsg room=this.room}} >
<div>
<input type="text" name="text"

placeholder="Enter message"
{{SendMsg_msgText}}
{{sunny_trigger}} />

</div>
<button {{sunny_trigger}}>Send</button>

</div>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need for any Ajax requests/responses

– the data-binding mechanism will automatically kick in

32

Adding New Features: adding a field

implement user status messages

all it takes:

user class User
status: Text

<p {{editableField obj=this.user fld="status"}}>
{{this.user.status}}

</p>

demo

33

Adding New Features: adding a field

implement user status messages
all it takes:

user class User
status: Text

<p {{editableField obj=this.user fld="status"}}>
{{this.user.status}}

</p>

demo

33

Adding New Features: adding a field

implement user status messages
all it takes:

user class User
status: Text

<p {{editableField obj=this.user fld="status"}}>
{{this.user.status}}

</p>

demo

33

Security/Privacy: write policies

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy User,
update:
"*": (usr, val) ->
return this.allow() if usr.equals(this.client?.user)
return this.deny("can’t edit other people’s data")

declarative and independent from the rest of the system
automatically checked by the system at each field access

34

Security/Privacy: write policies

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy User,
update:
"*": (usr, val) ->
return this.allow() if usr.equals(this.client?.user)
return this.deny("can’t edit other people’s data")

declarative and independent from the rest of the system
automatically checked by the system at each field access

34

Security/Privacy: write policies

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy User,
update:
"*": (usr, val) ->
return this.allow() if usr.equals(this.client?.user)
return this.deny("can’t edit other people’s data")

declarative and independent from the rest of the system
automatically checked by the system at each field access

34

Security/Privacy: read & find policies

hide avatars unless the two users share a room

policy User,
read:
avatar: (usr) ->

clntUser = this.client?.user
return this.allow() if usr.equals(clntUser)
if (this.server.rooms.some (room)->room.members.containsAll([usr, clntUser]))
return this.allow()

else
return this.deny()

read denied → empty value returned instead of raising exception

invisible users: hide users whose status is “busy”
policy User,
find: (users) -> clntUser = this.client?.user

return this.allow(filter users, (u) -> u.equals(clntUser) ||
u.status != "busy")

find policies → objects entirely removed from the client-view of the data

35

Security/Privacy: read & find policies

hide avatars unless the two users share a room
policy User,
read:
avatar: (usr) ->
clntUser = this.client?.user
return this.allow() if usr.equals(clntUser)
if (this.server.rooms.some (room)->room.members.containsAll([usr, clntUser]))
return this.allow()

else
return this.deny()

read denied → empty value returned instead of raising exception

invisible users: hide users whose status is “busy”
policy User,
find: (users) -> clntUser = this.client?.user

return this.allow(filter users, (u) -> u.equals(clntUser) ||
u.status != "busy")

find policies → objects entirely removed from the client-view of the data

35

Security/Privacy: read & find policies

hide avatars unless the two users share a room
policy User,
read:
avatar: (usr) ->
clntUser = this.client?.user
return this.allow() if usr.equals(clntUser)
if (this.server.rooms.some (room)->room.members.containsAll([usr, clntUser]))
return this.allow()

else
return this.deny()

read denied → empty value returned instead of raising exception

invisible users: hide users whose status is “busy”

policy User,
find: (users) -> clntUser = this.client?.user

return this.allow(filter users, (u) -> u.equals(clntUser) ||
u.status != "busy")

find policies → objects entirely removed from the client-view of the data

35

Security/Privacy: read & find policies

hide avatars unless the two users share a room
policy User,
read:
avatar: (usr) ->
clntUser = this.client?.user
return this.allow() if usr.equals(clntUser)
if (this.server.rooms.some (room)->room.members.containsAll([usr, clntUser]))
return this.allow()

else
return this.deny()

read denied → empty value returned instead of raising exception

invisible users: hide users whose status is “busy”
policy User,
find: (users) -> clntUser = this.client?.user

return this.allow(filter users, (u) -> u.equals(clntUser) ||
u.status != "busy")

find policies → objects entirely removed from the client-view of the data

35

Demo: defining access policies independently

no GUI templates need to change!

36

Policy Checking in SUNNY

access control style
policies attached to fields
implicit principal: client which issued current request
evaluate against the dynamic state of the program
policy code executes in the current client context

– circular dependencies resolved by allowing recursive operations

policy execution creates reactive server-side dependencies

– Alice’s client doesn’t contain Bob’s status field at all
– nevertheless, it automatically reacts when Bob changes his status!

37

Policy Checking in SUNNY

access control style
policies attached to fields
implicit principal: client which issued current request
evaluate against the dynamic state of the program
policy code executes in the current client context

– circular dependencies resolved by allowing recursive operations

policy execution creates reactive server-side dependencies

– Alice’s client doesn’t contain Bob’s status field at all
– nevertheless, it automatically reacts when Bob changes his status!

37

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Related Work: Reactive + Policies

checking
policies

enforcing
policies reactive

UI Frameworks
(.NET, XAML, Backbone.js, AngularJS, ...)

7 7 4

Traditional IF
(Resin, Jiff, Dytan, ...)

4 7 7

Reactive Web
(Ur/Web, Elm, Flapjax, Meteor, ...)

4 7 4

Enforcing Policies
(Jeeves, Hails/LIO, ...)

4 4 7

Sunny 4 4 4

38

Example SUNNY Apps

gallery of applications

internet relay chat
+ implement invisible users with policies

party planner
+ intricate and interdependent policies for hiding sensitive data

social network
+ highly customizable privacy settings

photo sharing
+ similar to “social network”, but in the context of file sharing

mvc todo
+ from single- to multi-user with policies

39

SUNNY: the big picture

declarative nature of SUNNY
centralized unified model
single-tier
uncluttered focus on essentials: what the app should do

my contribution: functionality
separation of main concerns: data, events, GUI, policies

data events

reactive GUI policies

going forward:
optimizations

– scalable/parallelizable back ends
– clever data partitioning
– declarative model-based cloud apps

visualization
– flexible model-based GUI builder
– generic & reusable widgets optimizations

visualization

Thank You!

40

SUNNY: the big picture

declarative nature of SUNNY
centralized unified model
single-tier
uncluttered focus on essentials: what the app should do

my contribution: functionality
separation of main concerns: data, events, GUI, policies

data events

reactive GUI policies

going forward:
optimizations

– scalable/parallelizable back ends
– clever data partitioning
– declarative model-based cloud apps

visualization
– flexible model-based GUI builder
– generic & reusable widgets optimizations

visualization

Thank You!

40

SUNNY: the big picture

declarative nature of SUNNY
centralized unified model
single-tier
uncluttered focus on essentials: what the app should do

my contribution: functionality
separation of main concerns: data, events, GUI, policies

data events

reactive GUI policies

going forward:
optimizations

– scalable/parallelizable back ends
– clever data partitioning
– declarative model-based cloud apps

visualization
– flexible model-based GUI builder
– generic & reusable widgets optimizations

visualization

Thank You!

40

SUNNY: the big picture

declarative nature of SUNNY
centralized unified model
single-tier
uncluttered focus on essentials: what the app should do

my contribution: functionality
separation of main concerns: data, events, GUI, policies

data events

reactive GUI policies

going forward:
optimizations

– scalable/parallelizable back ends
– clever data partitioning
– declarative model-based cloud apps

visualization
– flexible model-based GUI builder
– generic & reusable widgets optimizations

visualization

Thank You!

40

Acknowledgements

advisor

thesis
committee

UROPs

co-authors/
collaborators

41

Acknowledgements

advisor

thesis
committee

UROPs

co-authors/
collaborators

41

SUNNY: the big picture

declarative nature of SUNNY
centralized unified model
single-tier
uncluttered focus on essentials: what the app should do

my contribution: functionality
separation of main concerns: data, events, GUI, policies

data events

reactive GUI policies

going forward:
optimizations

– scalable/parallelizable back ends
– clever data partitioning
– declarative model-based cloud apps

visualization
– flexible model-based GUI builder
– generic & reusable widgets optimizations

visualization

Thank You!
42

document

42

	Introduction
	What is Declarative Programming?
	Spectrum of The Declarative Programming Space

	Synthesis and Higher-Order Constraint Solving
	What is Alloy*
	First-Order Vs. Higher-Order: Clique
	First-Order Vs. *Higher-Order*: maxClique
	maxClique Vs. Program Synthesis
	maxClique Vs. Program Synthesis
	maxClique Vs. Program Synthesis
	CEGIS: A Common Approach for Program Synthesis
	Alloy*
	Generality: Nested Higher-Order Quantifiers
	Alloy* Semantics
	Alloy* Implementation
	Optimizations
	Evaluation
	Conclusion

	Model-Based Reactive Web Applications
	A simple web app: IRC
	Conceptually simple, but in practice...

	Building the IRC app
	MDD: how far can it get us?
	Sunny IRC: data model
	Modeling done. What's next?
	Traditional MVC Approach
	Building GUIs in Sunny
	GUIs in Sunny: binding to events
	Adding New Features: Changing the Data Model
	Security/Privacy: 'write' policies
	Security/Privacy: 'read' and 'find' policies
	Demo the new access policies
	Policy Checking in Sunny
	Related Work: Reactive + Policies
	Example Sunny Apps
	Sunny: the big picture

	Conclusion
	Acknowledgements

