— 7
CSAIL /— N
7 1
SUNNY:

From Models to Interactive Web Apps
for (almost) free

Aleksandar Milicevic Milos Gligoric
Daniel Jackson Darko Marinov
{aleks,dnj}@csail.mit.edu {gliga,marinov}@illinois.edu

Onward! 2013
Indianapolis, IN

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

Sunny IRC

Welcome aleks (aleks@mit.

Sign Out Create Room

(created by aleks)

messages

aleks : What do you think about the slides?
daniel : too many bullet points

4 .
s Onward! Slides
members
. aleks
ﬂ milos daniel
milos
darko
CR daniel
'S
p
darko

darko joined 'Onward! Slides' room

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

Sunny IRC Welcome aleks (aleks@mit.edu) BESTNeIl SEENE CEIER Gt

o Onward! Slides (created by aleks)
£
2 members messages
il aleks aleks : What do you think about the slides?
3 milos daniel)
milos daniel : too many bullet points
darko
" daniel
(& E Send
p
g' darko
M Trip to Indianapolis (created by milos)
members + messages
milos milos : Did you book your tickets?
Send

Room Trip to Indianapolis' created

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

Sunny IRC

!‘.(

@R e

aleks

milos

daniel

darko

Welcome aleks (aleks@mit.edu) EESHNeIN Create Room

Onward! Slides (created by aleks)
members messages
aleks aleks : What do you think about the slides?
daniel i
milos daniel : too many bullet points
darko milos : beamer looks great!
- - Send
Trip to Indianapolis (created by milos)
members + messages
milos

milos : Did you book your tickets?

Conceptually simple, but in practice...

Conceptually simple, but in practice...
3

@ distributed system
— concurrency issues

- keeping everyone updated &

&>
g

Loy,

(

Conceptually simple, but in practice...

o distributed system \\\m Y
— concurrency issues (\:‘;ﬁ_’/v/@
— keeping everyone updated l i~ [oss) =
0% \ AYax
% S -
@ heterogeneous environment LE[ijr:‘
- rails + javascript + ajax + jquery + ... p— Y

— html + erb + css + sass + scss + bootstrap + ... o
— db + schema + server config + routes + ...

Conceptually simple, but in practice...

o distributed system \\\m Y
— concurrency issues (\:‘;ﬁ_’/v/@
— keeping everyone updated l i~ [oss) =
0% \ AYax
% S -
@ heterogeneous environment LE[ijr:‘
- rails + javascript + ajax + jquery + ... p— Y

— html + erb + css + sass + scss + bootstrap + ... o
— db + schema + server config + routes + ...

@ abstraction gap

— high-level problem domain
— low-level implementation level

Conceptually simple, but in practice...

@ distributed system
— concurrency issues

— keeping everyone updated %
b

@ heterogeneous environment
- rails + javascript + ajax + jquery + ... i |
— html + erb + css + sass + scss + bootstrap + ... &s="
— db + schema + server config + routes + ...

@ abstraction gap

— high-level problem domain
— low-level implementation level

MDD: how far can it get us?

exercise:

sketch out a model (design, spec)
for the Sunny IRC application

Sunny IRC: data model

record User < WebUser do
inherited fields
name: String,
email: String,
pswd_hash: String,
end

record Msg do
refs text: Text,
sender: User
end

record ChatRoom do
refs name: String,
members: (set User)
owns messages: (set Msg)
end

@ record-like data structures with typed fields
@ automatically persisted

Sunny IRC: machine model

machine Client < WebClient do machine Server < WebServer do
inherited fields # inherited fields
auth_token: String # online_clients: (set WebClient)
refs user: User owns rooms: (set ChatRoom)

end end

@ generic network architecture
@ machines are records too (= persisted, have fields)
@ assumes certain (standard) properties of web severs and clients

Sunny IRC: event model

event JoinRoom do
from client: Client
to serv: Server
params room: ChatRoom

requires { 'room.members.include?(client.user) }

ensures { room.members << client.user }

success_note { "#{client.user.name} joined ’'#{room.name}’ room" }
end

@ core functionality of the system

Sunny IRC: event model

to serv:
params room:

requires
ensures

end

event JoinRoom do
from client: Client

Server
ChatRoom

{ 'room.members.include?(client.user) }
{ room.members << client.user }

success_note { "#{client.user.name} joined ’'#{room.name}’ room" }

@ core functionality of the system
@ other IRC events: CreateRoom, SendMsg

@ included library events: CRUD operations, user Auth events

Modeling done. What next?

challenge

how to make the most of this model?

Modeling done. What next?

challenge

how to make the most of this model?

goal

make the model executable as much as possible!

Traditional MVC Approach

Traditional MVC Approach

@ boilerplate:
— write a matching DB schema
— turn each record into a resource (model class)
— turn each event into a controller and implement the CRUD
operations
— configure URL routes for each resource

Traditional MVC Approach

@ boilerplate:
— write a matching DB schema
— turn each record into a resource (model class)
— turn each event into a controller and implement the CRUD
operations
— configure URL routes for each resource

@ aesthetics:
— design and implement a nice looking GUI

Traditional MVC Approach

@ boilerplate:
— write a matching DB schema
— turn each record into a resource (model class)
— turn each event into a controller and implement the CRUD
operations
— configure URL routes for each resource

@ aesthetics:
— design and implement a nice looking GUI

@ to make it interactive:
— decide how to implement server push
— keep track of who'’s viewing what
— monitor resource accesses
— push changes to clients when resources are modified
— implement client-side Javascript to accept pushed changes and
dynamically update the DOM

Traditional MVC Approach

\\I//

— turn each record into a ré
- turn each event into

odel class)
ement the CRUD

@ aesthetics:
- de3|gn and implement a nice looking GUI

amically update the DOM

GUIs in SUNNY: dynamic templates

@ like standard templating engine (ERB) with data bindings
@ automatically re-rendered when the model changes

GUIs in SUNNY: dynamic templates

@ like standard templating engine (ERB) with data bindings
@ automatically re-rendered when the model changes

online_users.html.erb

<div class="list-group">
<% server.online_clients.user.each do |user| %>
<%= img_tag_for user %>

<% end %>
</div>

<div class="... <%= (user == client.user) ? 'me’
<h4 class="..."><%= user.name %></h4>
</div>

of

i} aleks

ﬂ milos
C’l daniel
i' darko

B

GUIs in SUNNY: dynamic templates

@ like standard templating engine (ERB) with data bindings
@ automatically re-rendered when the model changes

online_users.html.erb

<div class="list-group">
<% server.online_clients.user.each do |user| %>
<%= img_tag_for user %>

<div class="... <%= (user == client.user) ? 'me’ : '’ %>">
<h4 class="..."><%= user.name %></h4>
</div>

<% end %>
</div>

;-} aleks

ﬂ milos
C’l daniel
" darko

B

GUIs in SUNNY: binding to events

Trip to Indianapolis

members - messages

milos milos : Did y

GUIs in SUNNY: binding to events

Trip to Indianapolis

members - messages

room_members.html.erb milos milos : Did y

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"
data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>
<% end %>

GUIs in SUNNY: binding to events

Trip to Indianapolis

members messages

room_members.html.erb milos

milos : Did y:

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>

<% end %>

@ html5 data attributes specify event type and parameters
@ dynamically discovered and triggered asynchronously
@ no need to handle the Ajax response

— the data-binding mechanism will automatically kick in if the event makes any
changes

GUIs in SUNNY: binding to events

Trip to Indianapolis

members messages
room_members.html.erb milos milos : Did y

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}"

>...</button>
<% end %>

@ html5 data attributes specify event type and parameters
@ dynamically discovered and triggered asynchronously
@ no need to handle the Ajax response

— the data-binding mechanism will automatically kick in if the event makes any
changes

demo

@ responsive GUI without messing with javascript

Adding New Features: adding a field

implement user status messages

Adding New Features: adding a field

implement user status messages

@ all it takes:

record User < WebUser do <%= autosave_fld user,
refs status: String :status,
end :default => "...statusless..."

of
v

Adding New Features: adding a field

implement user status messages

@ all it takes:

record User < WebUser do
refs status: String
end

<%= autosave_fld user,
:status,
:default =>

...statusless..." %>

demo
Q Sunny IRC

é } aleks

€ making slides

milos
S reading

Welcome aleks (aleks@mit.edu) ISl Create Room

Trip to Indianapolis (created by milos)
members + messages
milos milos : Did you book your tickets?
Send

1

2

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
@ by default, all fields are public
@ policies used to specify access restrictions

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
@ by default, all fields are public
@ policies used to specify access restrictions

policy EditUserData do
principal client: Client

@desc = "Can’t edit other people’s data"
write User.x.when do |user| client.user == user end
end

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
@ by default, all fields are public
@ policies used to specify access restrictions

policy EditUserData do
principal client: Client

@desc = "Can’t edit other people’s data"
write User.x.when do |user| client.user == user end
end

@ declarative and independent from the rest of the system
@ automatically checked by the system at each field access

Adding New Features: adding ‘read’ policies

hide status messages in certain cases
@ show only if the two users share a room

Adding New Features: adding ‘read’ policies

hide status messages in certain cases
@ show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user]|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}
end

Adding New Features: adding ‘read’ policies

hide status messages in certain cases
@ show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user]|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}
end

invisible users
@ hide users whose status is “busy”

Adding New Features: adding ‘read’ policies

hide status messages in certain cases
@ show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user]|

client.user == user |

server.rooms.some?{|room| room.members.contains?([user, client.user])}
end

invisible users

@ hide users whose status is “busy”

@desc = "Hide ’'busy’ users"
restrict Client.user.when do |c]|

c != client && c.user.status == "busy"
end

Adding New Features: adding ‘read’ policies

hide status messages in certain cases
@ show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user]|
client.user == user |
server.rooms.some?{|room| room.members.contains?([user, client.user])}
end

invisible users
@ hide users whose status is “busy”

@desc = "Hide ’'busy’ users"
restrict Client.user.when do |c|

c != client && c.user.status == "busy"
end

no GUI templates need to change!

Demo: defining access policies independently

Q Sunny IRC Welcome aleks (aleks@mit.edu
4 | aleks Trip to Indianapolis (created by milos)
¥ ” busy
s members + messages

milos milos milos : Did you book your tickets?
3 ...statusless...

Q Sunny IRC Welcome milos (gliga@illinois.edu) BEShNelN3 Create Room

ﬂ milos Trip to Indianapolis (created by milos)
S reading...
9 members messages
milos milos : Did you book your tickets?
Did you book your tickets? Send

)

More cool policy examples

@ private messages: message text starts with @username

@desc = "filter out messages that start with '@’ but not '@#{client.user.name} "
filter ChatRoom.messages.reject do |room, msg|
msg.sender != client.user &&

msg.text.starts_with?("@") &&
'msg.text.starts_with?("@#{client.user.name} ")
end

More cool policy examples

@ private messages: message text starts with @username

@desc = "filter out messages that start with '@’ but not '@#{client.user.name} "
filter ChatRoom.messages.reject do |room, msg|
msg.sender != client.user &&

msg.text.starts_with?("@") &&
'msg.text.starts_with?("@#{client.user.name} ")
end

@ private rooms: if room name starts with "private", show messages to
members only

@desc = "if room name starts with ’#private’, show messages only to members"
restrict ChatRoom.messages.when do |room|
'room.members.include?(client.user) &&
room.name.starts_with?("#private")
end

SUNNY IRC: what was hard?

HTML & CSS for GUI templates
@ least fun, most tedious

SUNNY IRC: what was hard?

HTML & CSS for GUI templates
@ least fun, most tedious
@ future work: the SUNNY approach lends itself to MBUI builders

W Layoutit! sem

°
°
° ol x-cmo

o=

o b

oo

P

P

o ETEE—

S0 milos

T daniel

R - siides’

—

e

oo

oo

o

D e

Submit

1

7

Related Model-Driven Technologies

scaffolding (as in Rails)
@ uses transient models for one-off code generation
— beneficial mostly for the first prototype application

Related Model-Driven Technologies

scaffolding (as in Rails)
@ uses transient models for one-off code generation
— beneficial mostly for the first prototype application
@ in SUNNY
— permanent models, fundamental part of the running system

Related Model-Driven Technologies

scaffolding (as in Rails)
@ uses transient models for one-off code generation
— beneficial mostly for the first prototype application
@ in SUNNY
— permanent models, fundamental part of the running system

traditional MDD
@ permanent models, but external to the running system

— code generation used to generate an implementation
— roundtrips possible, but limited and discouraged

Related Model-Driven Technologies

scaffolding (as in Rails)
@ uses transient models for one-off code generation
— beneficial mostly for the first prototype application
@ in SUNNY
— permanent models, fundamental part of the running system

traditional MDD

@ permanent models, but external to the running system
— code generation used to generate an implementation
— roundtrips possible, but limited and discouraged
@ in SUNNY
— first-class models, interpreted at runtime
— the SUNNY modeling language is embedded in standard Ruby
— no code generation needed beforehand
— the models are the running code (reduces the paradigm gap)

Related “Web 3.0” Technologies

Meteor
@ low-level mechanism for automatic data propagation

@ all javascript framework
@ no explicit system model, no type information
— doesn’t get many of the MDD benefits

Related “Web 3.0” Technologies

Meteor
@ low-level mechanism for automatic data propagation

@ all javascript framework
@ no explicit system model, no type information
— doesn’t get many of the MDD benefits
@ SUNNY
— strives to provide a higher-level programming paradigm

@ addresses software design questions

@ imposes a more structured (model-based) approach

@ aims to bridge the gap between formal specification and executable
implementation

Related “Web 3.0” Technologies

Meteor
@ low-level mechanism for automatic data propagation

@ all javascript framework
@ no explicit system model, no type information
— doesn’t get many of the MDD benefits
@ SUNNY
— strives to provide a higher-level programming paradigm

@ addresses software design questions

@ imposes a more structured (model-based) approach

@ aims to bridge the gap between formal specification and executable
implementation

— another implementation of SUNNY could be built on top of Meteor

SUNNY: the big picture

CSAIL

20

SUNNY: the big picture

centralized unified model of the system
@ formal, analyzable modeling language (inspired by Alloy) E
@ fully executable KLlo

-
Y

CSAIL

20

SUNNY: the big picture

centralized unified model of the system
@ formal, analyzable modeling language (inspired by Alloy)
@ fully executable ALty

goal: maximize benefits of model-driven development
@ automatic data persistence and ORM
@ sequential semantics of a distributed system
@ automatic data propagation
@ automatic policy checking
@ generic model-based Ul builder
@ formal analysis, verification, model checking, model-based testing

I

CSAIL

20

SUNNY: the big picture

centralized unified model of the system
@ formal, analyzable modeling language (inspired by Alloy)
@ fully executable ALty

goal: maximize benefits of model-driven development
@ automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based Ul builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

I

CSAIL

20

SUNNY: the big picture

centralized unified model of the system
@ formal, analyzable modeling language (inspired by Alloy)
@ fully executable ALty

goal: maximize benefits of model-driven development
@ automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based Ul builder
@ formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You! c@,
I
SUNNY: coming for holidays 2013

I

CSAIL

